
Predicting House Prices Through Advanced Regression

Techniques Based on the Kaggle House Prices

Competition

Kelsey Sterner
kns56028@uga.edu

Quentin Proels
qap74567@uga.edu

Natalie Mayer
nrm20749@uga.edu

Jan Schiller
jan.schiller@uga.edu

School of Computing at the University of Georgia

Abstract

The housing market is a complex and continu-
ally changing system based on various factors
that can be hard to predict or measure (e.g.,
economic stability, supply/demand, shifting
aesthetics, location, etc.). Accurately predict-
ing housing prices is a crucial tool for buy-
ers, sellers, policy makers, and real estate
agents seeking to make informed decisions.
The dataset we are using to apply and test
different methods is a set containing instances
of houses sold in Ames, Iowa. Many different
methods have been historically applied and
tested in this type of regression problem. We
will be focusing on simple models and their ef-
ficacy as a baseline versus more sophisticated
methods such as neural networks, forests, and
boosting. We report the results of multiple ex-
periments conducted on our dataset and how
each led to the next in our iterative process to
improve our margin of error.

1 Introduction

There is a massive store of data collected and displayed
regarding the housing market in almost every satellite
accessible area due to sites like Zillow, Realtor, Redfin,
Trulia, etc. that display various details for every prop-
erty listed. This gives plenty of data and potential fea-
tures for analysts and the above-mentioned interested
parties to select for data mining purposes to tackle
the house price regression problem. Most of the prob-
lem arguably comes from the sheer number of features.

Copyright © by the paper’s authors. Copying permitted for
private and academic purposes.

Feature engineering is a key component to minimizing
errors and selecting the most informative attributes to
train on. These features are not universally applicable
to all geographical areas.

In our experiments, we will be focusing on mini-
mizing error for the specific location of the dataset,
Ames, Iowa, while keeping in mind how our feature
engineering techniques and encoding can be general-
ized to other similar datasets.

2 Examining the Data

Since our problem is proposed through a Kaggle
competition, we are examining the datasets provided
through Kaggle. This consists of a Train.csv file
(79 attributes including target and 1460 instances),
a Test.csv (78 attributes and 1459 instances), a
Data description.txt (to describe attributes), and a
Sample submission.csv (we won’t be looking at this
much for our techniques).
The general statistics of our dataset is as follows:
Mean — $180,921.20
STD — $79442.50
Q1 (25%) — $129,975
Q2 (50%) — $163,000
Q3 (75%) — $214,000
Max — $755,000

Looking at our general statistics, we quickly notice
that our mean is noticeably higher than our Q2 middle
of the range value. This is an early indicator of signifi-
cant outliers that we will explore in our first iterations
of our experiments.

3 Preparing the Dataset

In our first iteration of feature selection, our goal was
to simplify the dataset by reducing the number of fea-
tures while preserving those most relevant to predict-
ing housing prices. The dataset contains 79 features,
but not all are equally useful for predicting housing

Figure 1: Data Distribution

prices. Some add noise or overlap with others, which
can reduce the overall performance of the model.

In this section, we describe our preprocessing steps,
how we handled missing values and categorical data,
and the techniques we used for selecting informative
features.

3.1 Preprocessing and Cleaning

Before selecting features, we first cleaned and prepared
the data to ensure it was ready for modeling. This
included handling missing values and encoding cate-
gorical variables. These steps make sure the data is
in a format that learning models can understand, es-
pecially the models that need all input to be numeric
and don’t handle missing values well.

3.1.1 Missing Values

To address missing values, we chose to retain categori-
cal features with sparse data by filling their missing en-
tries with the placeholder value “None”. This allowed
us to preserve potentially useful information without
dropping entire columns.

For numerical features like “MasVnrArea” and
“GarageYrBlt”, missing values were filled with 0, while
“LotFrontage” was imputed using the median to re-
duce the influence of outliers. Finally, the single miss-
ing value in “Electrical” was filled using the mode to
maintain its distribution.

3.1.2 Encoding Categorical Features

Before converting the categorical data into numeric
values, we made two copies of the dataset. One was
designated for tree-based models, where we used label
encoding, and the other for linear models, where we
applied one-hot encoding.

3.1.3 Label Encoding

For tree-based models like decision trees, random
forests, and gradient boosting, we used label encoding
to convert variables into integer values. This method
assigns a unique numeric code to each category in a
column. Tree-based models handle this type of encod-
ing well because they make splits based on category
values rather than relying on any assumed order in
the values.

3.1.4 One-Hot Encoding

For linear-based models such as linear regression, lo-
gistic regression, and SVMs, we applied One-Hot En-
coding. This method turns each categorical variable
into a group of binary columns, one for every unique
category. It helps avoid implying any kind of order
among categories that don’t actually have one. While
this approach can increase the number of features sig-
nificantly, it tends to perform better with models that
are sensitive to the way categorical values are encoded.

3.2 Feature Selection

After encoding and cleaning the dataset, the next step
was selecting the most relevant features to include in
our models. With 79 features available, it was impor-
tant to identify and retain only those that had the most
predictive value for housing prices. This helps reduce
noise, improve training speed, and increase generaliza-
tion to unseen data. We explored multiple strategies
to ensure a well-rounded selection process.

3.2.1 Correlation Matrix and Heatmap

To start, we examined the relationships between nu-
merical features using a correlation matrix. Features
that are strongly correlated (with correlation coeffi-
cients above 0.8 or below -0.8) can introduce redun-
dancy and multicollinearity, especially in linear mod-
els, which can hurt performance and interpretability.
We used a heatmap to visualize these relationships and
flagged highly correlated feature pairs.

In particular, when two features were strongly cor-
related with each other but not necessarily with the
target variable (SalePrice), we considered removing
one of them. However, features that showed a strong
correlation with SalePrice were retained or given prior-
ity. This step acted as an initial filter before applying
more targeted selection techniques.

3.2.2 Stepwise Feature Selection

Next, we applied forward stepwise selection using
SequentialFeatureSelector from scikit-learn. This
method starts with no features and incrementally adds
one feature at a time, choosing the one that improves

Figure 2: Heatmap

model performance the most at each step. We used
a linear regression model to evaluate the predictive
power of each feature and selected the top 20 based on
this iterative process.

3.2.3 Feature Importance From Random For-
est

In addition to the stepwise selection, we also evaluated
feature importance using a Random Forest Regressor.
This tree-based method assesses how much each fea-
ture helps reduce prediction error across an ensem-
ble of decision trees. Since decision trees are great at
capturing non-linear relationships and interactions be-
tween features, this method often identifies important
variables that might not stand out as much in linear
models.

After comparing the results from both methods, we
combined the selected features to form a final set of
predictors. This mixed approach made sure that the
final feature list captured both statistical importance
and what worked best for the model. We saved the
resulting dataset and used it to train our final tree-
based models.

4 Simple Model Examination

The first experiments we conducted were seeing how
effective a basic Linear Regression Model and basic
Support Vector Regression Model would perform as a
baseline.

4.1 Linear Regression Model

For the implementation of our linear regression model,
we use the sklearn package and measure the error
through RMSE, MSE, and R-squared, focusing pri-
marily on RMSE.

After fitting our model to a randomly selected 80%
training, 20% testing standard split (1026 instances
used in training, 434 instances used in testing), the
model performance can be seen in Figure 2 and statis-
tics in Table 1.

Figure 3: Linear Regression Model

Table 1: Linear Regression Statistics

MSE 880446450.8044447
RMSE 29672.317921
R-squared 0.8623652268232884

The results of our linear regression model yielded
around $29,672.32 as our RMSE, with some clear vi-
sual influence as the values of the actual instances in-
crease above $300,000. This makes sense logically be-
cause there is generally a cap around what a ”high
end” or expensive house could be, especially some-
where more rural like Ames, Iowa. This makes a lin-
ear regression model less ideal since historical housing
market trends and house prices do not only move lin-
early.

4.2 Support Vector Regression

Our next experiment uses a support vector regression
model. We chose SVR because it is more robust in
terms of addressing outliers. Additionally, SVR incor-
porates kernels, which can improve performance for
non-linear relationships.

For our implementation we used sklearn’s SVR
model with a StandardScalar package since SVR can
be sensitive to feature scaling. We tried 3 different ker-
nels: linear, poly, and rbf. RBF performed the best
which is the model shown in Figure 3 that yielded the
statistics in Table 2.

Figure 4: SVR Model

Table 2: SVR Statistics

MSE 793656608.9970845
RMSE 28171.9117029
R-squared 0.8759325484704875

We can see from the table that there is a
marginal improvement to the RMSE from $29672.32
to $28171.91. However, the improvement is small com-
pared to the change in computational complexity from
a linear regression model to support vector regression
model.

5 Tree-based Models

Tree-based algorithms are commonly used for classifi-
cation but also for regression tasks. Supervised ma-
chine learning models construct decision trees to re-
cursively partition the feature space into regions, en-
abling hierarchical representation of the input vari-
ables. Each internal node represents a decision for
a feature and each leaf node represents a prediction.
Their ability to handle non-linear relationships and
handle different data types make them effective for our
housing price prediction [Ban20]. To ensure a consis-
tent comparison across the different tree-based mod-
els, the dataset was split into training and test sets
using an 80/20 split with train test split with a fixed
random state. This split is applied to both versions of
the dataset: one with the all features and another with
only the selected features (see Section 5). In the fol-
lowing, we successively compare tree-based methods
including Decision Trees, Random Forests, Gradient
Boosting and XGBoost. Starting with the simplest
model and then introducing bagging and boosting
techniques. All implementations are carried out us-
ing the scikit-learn library, except for XGBoost, which
is implemented using the xgboost package.

5.1 Decision Tree - CART Algorithm

The Classification and Regression Tree (CART) al-
gorithm is used for both classification and regression
tasks. An advantage is that a generated tree is inter-
pretable and can capture non-linear patterns. At each
node the algorithm selects the feature and threshold
that minimizes the root mean squared error (RMSE).
Each leaf node holds a constant prediction value show-
ing the average target value. In Figure 5 the scat-
ter plot compares the actual versus predicted house
prices for the decision tree model using all features
(color blue) and selected features (color orange). Both
versions tend to under-predict higher prices but also
show that feature selection is better than using all fea-
tures. With all features the model achieved an RMSE
of 45159.90 and R2 of 0.734, whereas after applying
feature selection the RMSE improved to 44033.18 and
R2 increased to 0.747.

Figure 5: Comparison of Different Tree-Models

5.2 Random Forest

Random Forest is an ensemble learning method that
combines multiple decision trees using bootstrap ag-
gregation (bagging). Every tree is trained on a ran-
domly sampled subset of the data and a random subset
of features. To get the final prediction the algorithm
averages the output of all individual trees, which re-
duces variance and improves robustness, while being
less prone to overfitting than CART.

Comparing the scatter plots Random Forest pro-
duces more accurate and stable predictions across the
full price range than the CART Model. Including all
features the model achieved an RMSE of 28968.07 and

R2 of 0.891 and RMSE of 28474.28 and R2 of 0.894
with selected features, showing the positive impact of
feature selection in this ensemble method.

5.3 Gradient Boosting Regressor

Gradient Boosting is an ensemble method that builds
decision trees sequentially, where each new tree is
trained on the residual errors made by the previous
ensemble. Compared to bagging it reduces bias by fo-
cusing on difficult to predict instances. Using all fea-
tures the model reached an RMSE of 28979.51 and R2

of 0.891, whereas after applying feature selection the
RMSE improved to 26822.27 and R2 to 0.906, showing
that it benefits from a reduced feature set.

5.4 XGBoost

Extreme Gradient Boosting (XGBoost) is a sophisti-
cated variant of gradient boosting that includes fea-
tures such as L1/L2 regularization, parallel processing
and handling of missing values. These features make
it faster and more robust. A similiar pattern can be
seen here, as using feature selection the RMSE with
26108.69 and R2 with 0.911 improved compared to us-
ing all features (RMSE: 26757.87, R2: 0.907).

5.5 Comparison

Comparing the results of all four tree-based models
(see Table 3) shows a clear improvement in perfor-
mance as model complexity increases. The CART
model showed the weakest performance. Ensemble
methods like Random Forest and Gradient Boosting
reduce prediction error and achieve similar R2 values
of 0.891. XGBoost achieved the best overall results
with an RSME of 26,108.69 and R2 of 0.911 after ap-
plying the feature selection. Using the introduced fea-
ture selection algorithm shows across all four models a
consistent improvement confirming that reducing irrel-
evant and redundant input variables can help improve
generalization and overfitting.

Model RSME R2

CART (All Features) 45159.90 0.734
CART (Selected Features) 44033.18 0.747

Random Forest (All) 28968.07 0.891
Random Forest (Selected) 28474.28 0.894

GBT (All) 28979.51 0.891
GBT (Selected) 26822.27 0.906

XGBoost (All) 26757.87 0.907
XGBoost (Selected) 26108.69 0.911

Table 3: Tree-Models performance for all and selected
features.

5.6 XGBoost - Hyperparameter Tuning

To improve the performance of the XGBoost Model
hyperparameter tuning is applied using a Random-
izedSearchCV and 10-fold cross-validation. In the
first stage a broad parameter grid is defined includ-
ing ranges of the number of estimators (n estimators),
learning rate (learning rate), tree depth (max depth),
and regularization terms (reg alpha, reg lambda), as
well as sub sampling and feature sampling ratios.
We iteratively adjusted and narrowed the subsequent
stages towards the most promising combinations. The
best result was obtained using the following parame-
ters:

n_estimators: 1000

learning_rate: 0.02

max_depth: 4

subsample: 0.7

colsample_bytree: 0.5

gamma: 0.5

reg_alpha: 0

reg_lambda: 0.5

With the tuned hyperparameter the model achieved
an RMSE of 24812.25 and an R2 score of 0.920
and outperforms the default configurations (RMSE:
26108.69, R2: 0.911). These results show that con-
ducting hyperparameter tuning increases the predic-
tive accuracy and reduces the error.

6 Deep Neural Network

6.1 Overview

Deep Neural Networks (DNN) can efficiently han-
dle high-dimensional data such as the dataset being
worked with allowing for all of the parameters to be
looked at to create the predictions. DNN models for-
mulate complex relationships between complex pat-
terns from the inputted features. If the dataset used
is large in both dimensions, it allows the DNN to effi-
ciently improve upon itself and provide fitting output.

6.2 Model Architecture

The deep neural network model was implemented us-
ing TensorFlow and Keras. The final model was struc-
tured as follows:

• Input Layer: 287 Features after encoding and
preprocessing

• Hidden Layer: Three connected layers of 128
neurons

• Activation: ReLU for all hidden layers

• Regularization: Dropout of .2 after each hidden
layer

• Output Layer: The output is sent to a single
neuron with linear activation to output predicted
house price

The model was compiled using the Adam optimizer
using the mean squared error as the loss function.

6.3 Training

The model was trained using many hyperparameter
combinations. The following was a good combination
of time needed to train-to-performance ratio:

• Epochs: 100

• Batch Size: 128

• Learning Rate: 0.01

The training was performed on scaled numerical fea-
tures and one hot encoded categorical features. All
NaN values were removed during preprocessing for the
model to run.

6.4 Experimenting and Tuning

The following experiments were performed to optimize
model performance:

6.4.1 Baseline

The initial basic model used comprised of:

• 2 hidden layers: 128 followed by 64 neurons

• Learning rate: 0.001

• Epochs: 50

• Batch size: 32

Result: MSE = 1,260,793,088, RMSE ≈ 35,500 (not
good at all)

Figure 6: Baseline Model Predictions

6.4.2 Batch Size

Different batch sizes were first tested with the follow-
ing results:

• Batch size 32: MSE = 991,104,000

• Batch size 64: MSE = 875,392,512

• Batch size 128: MSE = 817,047,616

• Batch size 256: MSE = 32,362,987,520 (unstable
learning at this size)

Batch size 128 will be used

6.4.3 Epochs

With batch size 128, these epoch counts were tested:

• 75 epochs: MSE = 749,735,872

• 100 epochs: MSE = 685,382,528

• 200 epochs: MSE = 644,712,512

Since the jump from 100 to 200 epochs drastically in-
creases training time, 100 epochs will be used

6.4.4 Learning Rate

With batch size 128 and 100 epochs:

• Learning rate 0.001: MSE = 685,382,528

• Learning rate 0.01: MSE = 564,026,816

• Learning rate 0.1: MSE = 783,871,168

.01 is the obvious choice among these.

6.4.5 Hidden Layer Configuration

Various combinations of neurons and depth of layers
were tested:

• (128, 64): Significantly worse performance

• (128, 128): MSE = 478,299,360 (strong improve-
ment)

• (128, 128, 128): Similar MSE but faster conver-
gence

Due to the faster convergence, the three layers of 128
will be used.

6.5 Final Model

The best model found:

• 3 layers of 128 neurons

• 3 dropout layers at 20%

• Batch size: 128, Epochs: 100, Learning rate: 0.01

Final Result: MSE = 478,299,360, RMSE ≈ 21,868
This result improved RMSE by roughly 40% from the
baseline.

Figure 7: Final Model Predictions

6.6 DNN discussion

The deep neural network was significantly improved
through hyperparameter tuning. Increasing depth,
learning rate, and batch size provided large improve-
ments in RMSE. However, it can also be observed that
more is not always better. Deeper models and fast
learning rates tend to lead to divergence or overfit-
ting completely ruining the performance of the model.
The final Model provides competitive performance in
one package and can be possibly used in ensemble to
further improve predictions.

7 Splitting the Dataset

After our status presentation, through the recommen-
dation of Dr. Rasheed, we decided to try classifying
the data into 3 categories and then using our regres-
sion models on the classified instances. This is because
the outliers seen earlier had significant impact on the
model predictions

7.1 Gradient Boosting Regressor

We examined one of our better performing models us-
ing a rudimentary split of the data into thirds. Our
results (see Figure 8 and Figure 9) were promising es-
pecially in the lower ranges where we see more consis-
tency with a RMSE of $13,190 for the lower range
($60,000 to $140,000) and $11,270 for the medium
range ($140,000 to $190,000). That being said, there
is clear training set bias in this examination which is
why we followed this experiment with a KNN imple-
mentation to explore realistic performance.

The High Price Range ends up performing signif-
icantly worse when isolated. Based on Figure 10,
it appears predictions are only viable up to around
$350,000 and more hyper parameter tuning and data
examination would be required to get more effective
results in a more volatile price range.

7.2 Gradient Boosting Regressor and KNN

The process of this experiment starts by splitting the
range of the SalePrice into thirds and labeling each in-

Figure 8: Low Price Range

Figure 9: Medium Price Range

stance in the training set into one of the low, medium,
or high categories. Then the dataset is 80/20 split into
training and testing.

For the K-nearest neighbor classifier we used
sklearn’s KNeighborsClassifier with a default of 5
neighbor input. We then fit the KNN on the train-
ing instances and the bins and ran the predictions.

Following our KNN we create 3 GradientBoostin-
gRegressor models, one for each bin (low, medium,
high). The models are each fitted and trained on each
set of bins.

Our results can be seen in Figure 11, Figure 12, and
Figure 13.

Our experiment yielded a significant improvement
in RMSE for low price range instances with $19803.34
and a comparable RMSE for the medium price range
at $26292.66.

The high price range still performs the worst at
$34612.85 due to significant outliers and our other

Figure 10: High Price Range

Figure 11: Low Price Bin

models should be opted for in those cases. Using a
more sophisticated binning process could likely im-
prove RMSE for future work.

8 Conclusion

Based on our experiments, our deep neural network
performs the best with the drawback of high compu-
tational needs. Following our all encompassing predic-
tions, XGBoost with hyperparameter tuning produces
the lowest RMSE. And finally, a Gradient Boosting
Regressor with a KNN bin process produces the low-
est RMSE for ”low” price ranges.

For market application, a deep neural network
should be used with proper tuning given enough train-
ing instances for effective results. Additionally, in fu-
ture experiments, XGBoost should be used in com-
bination with a KNN classifier for binning yields the
best average results for median market ranges. Higher
price ranges where instance density begins to drop off
should be examined on a case-by-case basis when pos-
sible since the predictions become extremely volatile.

Figure 12: Medium Price Bin

Figure 13: High Price Bin

9 Quick Note on Individual Contribu-
tions

Kelsey implemented the LGM, SVR, Gradient Boost-
ing Regressor (GBR), GBR with KNN, setup the tem-
plate formatting for the paper, wrote full sections
(and created associated figures) for Abstract, Intro-
duction, Examining the Data, Simple Model Examina-
tion, Splitting the Dataset, Conclusion. Also created
all associated slides with those sections for progress
and final presentations.

Natalie handled the cleaning and pre-processing
of the data as well as encoding categorical values with
one-hot and label encoding. She performed Feature
Selection on the dataset with Forward Selection and
Feature Importance via Random Forest. She wrote
the following sections in the paper: Feature Selection
Iteration 1, Preprocessing the Dataset, Missing Values,
Encoding Categorical Features, Label Encoding, One-
Hot Encoding, Feature Selection, Correlation Matrix
and Heatmap, Stepwise Feature Selection, and Fea-
ture Importance From Random Forest. Natalie also
created the associated slides in the progress and final
presentations.

Jan implemented Decision Tree (CART), Random
Forest, Gradient Boosting, and XGBoost and evalu-
ated all with and without feature selection. He created
graphs for each with actual vs. predicted and fea-
ture importance graphs. He performed hyperparam-

eter tuning for XGBoost using multi-stage Random-
izedSearchCV. He wrote the corresponding sections in
the paper: Tree-Based Models, CART, Random For-
est, Gradient Boosting, XGBoost, Model Comparison,
and Hyperparameter Tuning. He also created the as-
sociated progress and final presentation slides.

Quentin implemented everything to do with the
deep neural network (DNN). This included setup,
DNN preprocessing, tuning, and testing. Quentin also
wrote the section for the DNN in the research paper
and did all slides associated with it and corresponding
figures.

9.1 Main notebook testing and demos for ref-
erence

Main group notebook:
https://colab.research.google.com/drive/1kmrWk5u3jyYnGizrGx4kiZ8X80etV79D?usp=sharing

GBR-Testing notebook:
https://colab.research.google.com/drive/1J853wQHyJJQNLHne1nWrmvqc0HEkEKGS?usp=sharing

References

[Ban20] Prateek Banerjee. Tree based machine
learning algorithms explained. Medium,
2020. https://medium.com/analytics-
vidhya/tree-based-machine-learning-
algorithms-explained-b50937d3cf8e,
Accessed: May 5, 2025.

[1] Gusthema. Ranik. House Prices Prediction
Using Tfdf Notebook, 2023.

